Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным. Напряженность поля заряженной плоскости Однородное электрическое поле создано равномерно заряженной

Главная / Конструкции

1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

(13.10)

а на его поверхности (r=R)

(13.11)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

Из сопоставления последних выражений следует

(13.12)

где- диэлектрическая проницаемость внутри шара. Зависимость напряженности поля, создаваемого заряженной сферой, от расстояния до центра шара приведена на (рис.13.10)

3. Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра).

Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью .

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

(13.13)

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток вектора через противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом, С другой стороны по теореме Гаусса

Следовательно

но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна

Жидкевич В. И. Электрическое поле плоскости // Фізіка: праблемы выкладання. - 2009. - № 6. - С. 19-23.

Задачи по электростатике можно разделить на две группы: задачи о точечных зарядах и задачи о заряженных телах, размеры которых нельзя не учитывать .

Решение задач по расчёту электрических полей и взаимодействий точечных зарядов основано на применении закона Кулона и не вызывает особых затруднений. Более сложным является определение напряжённости поля и взаимодействия заряженных тел конечных размеров: сферы, цилиндра, плоскости. При вычислении напряжённости электростатических полей различной конфигурации следует подчеркнуть важность принципа суперпозиции и использовать его при рассмотрении полей, созданных не только точечными зарядами, но и зарядами, распределёнными по поверхности и объёму. При рассмотрении действия поля на заряд формула F=qE в общем случае справедлива для точечных заряженных тел и только в однородном поле применима для тел любых размеров и формы, несущих заряд q.

Электрическое поле конденсатора получается в результате наложения двух полей, созданных каждой пластиной.

В плоском конденсаторе можно рассматривать одну пластину как тело с зарядом q 1 помещённое в электрическое поле напряжённостью Е 2 , созданное другой пластиной.

Рассмотрим несколько задач.

1. Бесконечная плоскость заряжена с поверхностной плотностью σ >0. Найдите напряжённость поля Е и потенциал ϕ по обе стороны плоскости, считая потенциал плоскости равным нулю. Постройте графики зависимостей Е(х), ϕ (х). Ось х перпендикулярна плоскости, точка х=0 лежит на плоскости.

Решение. Электрическое поле бесконечной плоскости является однородным и симметричным относительно плоскости. Его напряжённость Связь между напряжённостью и разностью потенциалов между двумя точками однородного электростатического поля выражается формулой где х - расстояние между точками, измеренное вдоль силовой линии. Тогда ϕ 2 = ϕ 1 -Eх . При х<0 при х>0 Зависимости Е(х) и ϕ (х) представлены на рисунке 1.

2. Две плоскопараллельные тонкие пластины, расположенные на малом расстоянии d друг от друга, равномерно заряжены зарядом поверхностной плотностью σ 1 и σ 2 . Найдите напряжённости поля в точках, лежащих между пластинами и с внешней стороны. Постройте график зависимости напряжённости Е(х) и потенциала ϕ (х), считая ϕ (0)=0. Рассмотрите случаи, когда: a) σ 1 =-σ 2 ; б) σ 1 = σ 2 ; в) σ 1 =3 σ 2 -

Решение. Так как расстояние между пластинами мало, то их можно рассматривать как бесконечные плоскости.

Напряжённость поля положительно заряженной плоскости равна и направлена от неё; напряжённость поля отрицательно заряженной плоскости направлена к ней.

Согласно принципу суперпозиции поле в любой рассматриваемой точке будет создаваться каждым из зарядов в отдельности.

а) Поля двух плоскостей, заряженных равными и противоположными по знаку зарядами (плоский конденсатор), складываются в области между плоскостями и взаимно уничтожаются во внешних областях (рис. 2, а).

При х <0 Е = 0, ϕ =0; при 0 d Е= 0, Графики зависимости напряжённости и потенциала от расстояния х приведены на рисунке 2, б, в.

Если плоскости конечных размеров, то поле между плоскостями не будет строго однородным, а поле вне плоскостей не будет точно равно нулю.

б) Поля плоскостей, заряженных равными по величине и знаку зарядами (σ 1 = σ 2 ), компенсируют друг друга в пространстве между плоскостями и складываются во внешних областях (рис. 3, а). При х<0 при 0d

Воспользовавшись графиком Е(х) (рис. 3, б), построим качественно график зависимости ϕ (х) (рис. 3, в).

в) Если σ 1 = σ 2 , то, учитывая направления полей и выбирая направление направо за положительное, находим:

Зависимость напряжённости Е от расстояния показана на рисунке 4.

3. На одной из пластин плоского конденсатора ёмкостью С находится заряд q 1 =+3q , а на другой q 2 =+ q. Определите разность потенциалов между пластинами конденсатора.

Решение. 1-й способ. Пусть площадь пластины конденсатора S, а расстояние между ними d. Поле внутри конденсатора однородное, поэтому разность потенциалов (напряжение) на конденсаторе можно определить по формуле U=E*d, где Е - напряжённость поля внутри конденсатора.

где Е 1 , Е 2 - напряжённости поля, создаваемого пластинами конденсатора.

Тогда

2-й способ. Добавим на каждую пластину заряд Тогда пластины конденсатора будут иметь заряды + q и -q. Поля одинаковых зарядов пластин внутри конденсатора компенсируют друг друга. Добавленные заряды не изменили поле между пластинами, а значит, и разность потенциалов на конденсаторе. U= q/C .

4. В пространство между обкладками незаряженного плоского конденсатора вносят тонкую металлическую пластину, имеющую заряд +q . Определите разность потенциалов между обкладками конденсатора.

Решение. Так как конденсатор не заряжен, то электрическое поле создаётся только пластиной, имеющей заряд q (рис. 5). Это поле однородное, симметричное относительно пластины, и его напряжённость Пусть потенциал металлической пластины равен ϕ . Тогда потенциалы обкладок А и В конденсатора будут равны ϕ- ϕ А = ϕ El 1 ; ϕ А = ϕ-El 1 ; ϕ- ϕ B = ϕ-El 2 ; ϕ B = ϕ-El 2 .

Разность потенциалов между обкладками конденсатора Если пластина находится на одинаковом расстоянии от обкладок конденсатора, то разность потенциалов между обкладками равна нулю.

5. В однородное электрическое поле напряжённостью Е 0 перпендикулярно силовым линиям помещают заряженную металлическую пластину с плотностью заряда на поверхности каждой стороны пластины σ (рис. 6). Определите напряжённость поля Е" внутри и снаружи пластины и поверхностную плотность зарядов σ 1 и σ 2 , которая возникнет на левой и правой сторонах пластины.

Решение. Поле внутри пластины равно нулю и является суперпозицией трёх полей: внешнего поля Е 0 , поля, создаваемого зарядами левой стороны пластины, и поля, создаваемого зарядами правой стороны пластины. Следовательно, где σ 1 и σ 2 - поверхностная плотность заряда на левой и правой сторонах пластины, которая возникает после внесения пластины в поле Е 0 . Суммарный заряд пластины не изменится, поэтому σ 1 + σ 2 =2 σ , откуда σ 1 = σ- ε 0 E 0 , σ 2 = σ + ε 0 E 0 . Поле снаружи пластины является суперпозицией поля Е 0 и поля заряженной пластины Е . Слева от пластины Справа от пластины

6. В плоском воздушном конденсаторе напряжённость поля Е= 10 4 В/м. Расстояние между обкладками d= 2 см. Чему будет равна разность потенциалов, если между пластинами параллельно им поместить металлический лист толщиной d 0 =0,5 см (рис. 7)?

Решение. Поскольку электрическое поле между пластинами однородное, то U=Ed, U=200 В.

Если между пластинами пометить металлический лист, то получается система из двух последовательно соединённых конденсаторов с расстоянием между пластинами d 1 и d 2 . Ёмкости этих конденсаторов Их общая ёмкость

Так как конденсатор отключён от источника тока, то заряд конденсатора при внесении металлического листа не меняется: q"=CU=С"U 1 ; где емкость конден сатора до внесения в него металлического листа. Получаем:

U 1 = 150 В.

7. На пластинах А и С, расположенных параллельно на расстоянии d= 8 см друг от друга, поддерживаются потенциалы ϕ 1 = 60 В и ϕ 2 =- 60 В соответственно. Между ними поместили заземлённую пластину D на расстоянии d 1 = 2 см от пластины А. На сколько изменилась напряжённость поля на участках AD и CD? Постройте графики зависимостей ϕ (x ) и Е(х).

8. Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным.

Пусть поверхностная плотность заряда равна s. Очевидно что вектор Е может быть только перпендикулярным заряженной плоскости. Кроме того очевидно, что в симметричных относительно этой плоскости точках вектор Е одинаков по модулю и противоположен по направлению. Такая конфигурация поля подсказывает, что в качестве замкнутой поверхности следует выбрать прямой цилиндр, где предполагается что s больше нуля. Поток сквозь боковую поверхность этого цилиндра равен нулю, и поэтому полный поток через всю поверхность цилиндра будет равным 2*Е*DS, где DS – площадь каждого торца. Согласно теореме Гаусса

где s*DS – заряд заключенный внутри цилиндра.

Точнее это выражение следует записать так:

где Еn – проекция вектора Е на нормаль n к заряженной плоскости, причем вектор n направлен от этой плоскости.

Тот факт, что Е не зависит от расстояния до плоскости, означает, что соответствующее электрическое поле является однородным.


9. Из медной проволоки изготовлена четверть окружности радиусом 56 см. По проволоке равномерно распределен заряд с линейной плотностью 0,36 нКл/м. Найдите потенциал в центре окружности.

Так как заряд линейно распределен по проволоке для нахождения потенциала в центре воспользуемся формулой:

Где s - линейная плотность заряда, dL – элемент проволоки.


10. В электрическом поле, созданном точечным зарядом Q, по силовой линии из точки расположенной на расстоянии r 1 от заряда Q в точку, расположенную на расстоянии r 2 , перемещается отрицательный заряд -q. Найдите приращение потенциальной энергии заряда -q на этом перемещении.

По определению потенциал – это величина, численно равная потенциальной энергии единичного положительного заряда в данной точке поля. Следовательно потенциальная энергия заряда q 2:


11. Два одинаковых элемента с э.д.с. 1,2 В и внутренним сопротивлением 0,5 Ом соединены параллельно. Полученная батарея замкнута на внешнее сопротивление 3,5 Ом. Найдите силу тока во внешней цепи.

Согласно закону Ома для всей цепи сила тока во внешней цепи:

Где E` - ЭДС батареи элементов,

r` - внутреннее сопротивление батареи, которое равно:

ЭДС батареи равна сумме ЭДС трех последовательно соединенных элементов:

Следовательно:


12 В электрическую цепь включены последовательно медная и стальная проволоки равной длины и диаметра. Найдите отношение количеств тепла выделяющегося в этих проволоках.

Рассмотрим проволоку длиной L и диаметром d, изготовленную из материала с удельным сопротивление p. Сопротивление проволоки R можно найти по формуле

Где s= – площадь поперечного сечения проволоки. При силе тока I за время t в проводнике выделяется количество теплоты Q:

При этом, падение напряжения на проволоке равно:

Удельное сопротивление меди:

p1=0.017 мкОм*м=1.7*10 -8 Ом*м

удельное сопротивление стали:

p2=10 -7 Ом*м

так как проволоки включены последовательно, то силы тока в них одинаковы и за время t в них выделяются количества теплоты Q1 и Q2:


12. В однородном магнитном поле находится круговой виток с током. Плоскость витка перпендикулярна силовым линиям поля. Докажите, что результирующая сил, действующих со стороны магнитного поля на контур, равна нулю.

Так как круговой виток с током находится в однородном магнитном поле, на него действует сила Ампера. В соответствии с формулой dF=I результирующая амперова сила, действующая на виток с током определяется:

Где интегрирование проводится по данному контуру с током I. Так как магнитное поле однородно, то вектор В можно вынести из-под интеграла и задача сволится к вычислению векторного интеграла . Этот интеграл представляет замкнутую цепочку элементарных векторов dL, поэтому он равен нулю. Значит и F=0, то есть результирующая амперова сила равна нулю в однородном магнитном поле.


13. По короткой катушке, содержащей 90 витков диаметром 3 см, идет ток. Напряженность магнитного поля, созданного током на оси катушки на расстоянии 3 см от нее равна 40 А/м. Определите силу тока в катушке.

Считая, что магнитная индукция в точке А есть суперпозиция магнитных индукций, создаваемых каждым витком катушки в отдельности:

Для нахождения В витка воспользуемся законом Био-Савара-Лапласа.

Где, dBвитка – магнитная индукция поля, создаваемая элементом тока IDL в точке, определяемой радиус-вектором r Выделим на конце элемент dL и от него в точку А проведем радиус-вектор r. Вектор dBвитка направим в соответствие с правилом буравчика.

Согласно принципу суперпозиции:

Где интегрирование ведется по всем элементам dLвитка. Разложим dBвитка на две составляющие dBвитка(II) – параллельную плоскости кольца и dBвитка(I) – перпендикулярную плоскости кольца. Тогда

Заметив, что из соображений симметрии и что векторы dBвитка(I) сонаправленные, заменим векторное интегрирование скалярным:

Где dBвитка(I) =dBвитка*cosb и

Поскольку dl перпендикулярен r

Сократим на 2p и заменим cosb на R/r1

Выразим отсюда I зная что R=D/2

согласно формуле связывающей магнитную индукцию и напряженность магнитного поля:

тогда по теореме Пифагора из чертежа:


14. В однородное магнитное поле в направлении перпендикулярном силовым линиям влетает электрон со скоростью 10۰10 6 м/с и движется по дуге окружности радиусом 2,1 см. Найдите индукцию магнитного поля.

На электрон, движущийся в однородном магнитном поле будет действовать сила Лоренца, перпендикулярная скорости электрона и следовательно направленная к центру окружности:

Так как угол между v и И равен 90 0:

Так как сила Fл направлена к центру окружности, и электрон двигается по окружности под действием этой силы, то

Выразим магнитную индукцию:


15. Квадратная рамка со стороной 12 см, изготовленная из медной проволоки, помещена в магнитное поле, магнитная индукция которого меняется по закону В=В 0 ·Sin(ωt), где В 0 =0,01 Тл, ω=2·π/Т и Т=0,02 с. Плоскость рамки перпендикулярна к направлению магнитного поля. Найдите наибольшее значение э.д.с. индукции, возникающей в рамке.

Площадь квадратной рамки S=a 2 . Изменение магнитного потока dj, при перпендикулярности плоскости рамки dj=SdB

ЭДС индукции определяется

Е будет максимальна при cos(wt)=1

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где dq – заряд, сосредоточенный на площади dS; dS – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS , расположенными симметрично относительно плоскости (рис. 2.12).


Рис. 2.11 Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток Ф Е через боковую часть поверхности цилиндра равен нулю, т.к.Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

(2.5.1)

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Тогда внутри плоскостей

(2.5.2)

Вне плоскостей напряженность поля

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

где S – площадь обкладок конденсатора. Т.к. , то

. (2.5.5)

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где dq – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре ) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

. (2.5.6)

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16).

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Потенциал поля

Потенциал поля

Потенциал поля

потенциалов поля

Потенциал электрического поля точечного заряда Q в точке:

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R , заряженной с постоянной линейной плотностью , где dq – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре ) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

. (2.5.6)

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

27. Потенциал поля, создаваемого равномерно заряженной бесконечной плоскостью.

Потенциал поля - это энергетическая характеристика поля, характеризует потенциальнную энергию, которой обладал бы положительный единичный заряд, помещенный в данную точку поля.

Единица электрического потенциала - вольт (В).

Потенциал поля равнен отношению потенциальной энергии заряда к этому заряду:

Потенциал поля является энергетической характеристикой электрического поля и как скалярная величина может принимать положительные или отрицательные значения.

Физический смысл имеет разность потенциалов поля , так как через нее выражается работа сил поля по перемещению заряда.

Поле равномерно заряженной бесконечной плоскости.

Введем понятие поверхностной плотности заряда >0, численно равной заряду единицы площади:

В силу однородности и изотропности пространства силовые линии поля равномерно заряженной бесконечной плоскости должны быть перпендикулярными к ней и иметь равномерную густоту, что соответствует определению однородности поляЕ =const. В качестве "удобной" замкнутой поверхности выберем прямой цилиндр, боковая поверхность которого параллельна силовым линиям (везде на ней 0 и, следовательно, поток сквозь нее равен 0), а торцевые поверхности площадью S - параллельны заряженной плоскости (так что везде на них 1):



Поток однородного поля Е сквозь обе перпендикулярные ему торцевые поверхности S равен просто Е 2S, а заряд, сосредоточенный на участке площадью S заряженной поверхности, равен S:

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где dq – заряд, сосредоточенный на площади dS ; dS – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS , расположенными симметрично относительно плоскости (рис. 2.12).


Рис. 2.11 Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток Ф Е через боковую часть поверхности цилиндра равен нулю, т.к. Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

Электростатическое поле обладает важным свойством: Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда. Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями. Следствием независимости работы от формы траектории является следующее утверждение: Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными . На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа ΔA кулоновских сил на этом перемещении равна

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов то при перемещении пробного заряда q работа A результирующего поля в соответствии спринципом суперпозиции будет складываться из работ кулоновских полей точечных зарядов: Так как каждый член суммы не зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q , помещенного в эту точку, принимается равной нулю.

Потенциальная энергия заряда q , помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A 10 , которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):

W p1 = A 10 .

(В электростатике энергию принято обозначать буквой W , так как буквой E обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет


ПОИСК ПО САЙТУ:

© 2024 pavel3333.ru -- Строительный портал - Pavel3333